

Chapter-5

PROBLEM SOLVING METHODOLOGY

 Introduction

 The term problem solving is used in many disciplines, sometimes with different perspectives and

often with different terminologies.

 The problem-solving process starts with the problem specification and end with a correct program.

 The steps to follow in the problem-solving process are:

 Problem definition

 Problem Analysis

 Algorithm development

 Coding

 Testing & Debugging

 Documentation & Maintenance

 The stages of analysis, design, programming, implementation and maintenance form the life cycle

of the system.

 Problem definition:

 This step defines the problem thoroughly. Here requirements are specified. This step includes

understanding the problem very well. The problem solver must understand problem very well to

solve problem efficiently.

 Problem Analysis:

 Analyzing the problem or analysis involves identifying the following:

 Inputs, i.e. the data you have to work with.

 Outputs i.e. the desired results.

 Any additional requirements on the solutions.

 ALGORITHM

 An Algorithm is a step-by-step procedure to solve a given problem.

 The word algorithm originates from the word „algorism‟ which means process of doing arithmetic with

Arabic numerals.

 In 9
th

-century Arab Mathematician, Mohammed Al-Khowarizmi, who developed methods for

solving problems which is, used specific step-by-step instructions.

 Characteristics of algorithm:

 A well defined algorithm has the five basic characteristics; as follows

1.Input: Algorithm starts with procedural steps to accept input data. The algorithm

mustaccept one or more data to be processed.

2.Definite: Each operational step or operation must be definite i.e. each and every

instructionmust clearly specify that what should be done.

3.Effective: Each operational step can at least in principle is carried out by a person

using apaper and pencil in a minimum number of times.

4.Terminate: After some minimum number operation algorithm must come to an

end.

5.Output: An algorithm is written to solve the problem, therefore it must produce one

ormore computed result or answer called output.

Example: An algorithm to find the area of a rectangle can be expressed as follows:

 Given the length l and the breadth b, this algorithm finds the area of rectangle rec.

Step 1: START

Step 2: [Read the vales of l, b]

INPUT l, b

Step 3: [Calculate are of rectangle]

rec = l * b

Step 4: [Print the area of rectangle]

OUTPUT rec

Step 5: [End of Algorithm]

STOP

In the above example, we used = that represents assignment.

1. Design an algorithm to find the average of four numbers

Step 1: START

Step 2: INPUT A, B, C, D

Step 3: [Calculate] AVG = (A+B+C+D)/4

Step 4: OUTPUT AVG

Step 5: STOP

2. Design an algorithm to calculate the Simple Interest, given the Principal (P), and Rate (R)

and Time (T)

Step 1: START

Step 2: INPUT P, T, R

Step 3: [Calculate] SI = (P*T*R)/100

Step 4: OUTPUT SI

Step 5: STOP

3. Design an algorithm to find the greatest of three number (A, B, C)

Step 1: START

Step 2: INPUT A, B, C

Step 3: [Assign A to large]

Large = A

Step 4: [Compare large and B]

If(B > large)

Large = B

Endif

Step 5: [Compare large and C]

If(C> large)

Large = C

Endif

Step 6: [Print the largest number]

OUTPUT large

Step 7: STOP

4. Design an algorithm to find factorial of a number (N)

Step 1: START

Step 2: INPUT N

Step 3: [Initialize factorial to 1]

Fact = 1

Step 4: [compute the factorial by successive multiplication]

Repeat for I = 1 to N

Fact = Fact * I

[End of Step 4 for loop]

Step 5: [Print factorial of given number]

OUTPUT Fact

Step 6: STOP

5. Design an algorithm to find Fibonacci series (N)

Step 1: START

Step 2: INPUT N

Step 3: [Initialize the variables]

First = 0

Second = 1

Term = 2

Step 4: [Print the values of first and second]

PRINT First, Second

Step 5: Third = First + Second

Step 6: Repeat while (term<= N)

PRINT Third

First = Second

Second = Third

Third = First + Second

Term = Term + 1

[End of While loop]

Step 7: STOP

6. Design an algorithm to find the GCD of two numbers (A, B)

Step 1: START

Step 2: INPUT A, B

Step 3: Repeat while (B != 0)

Rem = A % B

A = B

B = Rem

[End of While loop]

Step 4: [Print the last divisor]

PRINT A

Ste 5: STOP

 Advantage of Algorithm

1. It is a step-by-step representation of a solution to a given problem, which is very easy to

understand.

2. It has got a definite procedure, which can be executed within a set period of time.

3. It is independent of programming language.

4. It is easy to debug as every step has got its own logical sequence.

 Disadvantage of Algorithm

 It is time-consuming

 An algorithm is developed first which is converted into a flowchart and then into a computer

program.

 Analysis of Algorithm

 There may be more than one approach to solve a problem. The choice of a particular algorithm

depends on the following performance analysis and measurements.

o Space complexity: The amount of memory needed by the algorithm to complete its run.

o Time Complexity: The amount of time, the algorithm needed to complete its run.

 When we analyze an algorithm depends on input data, there are three cases

o Best Case

o Average Case

o Worst Case

 FLOWCHART

 A Flowchart is a pictorial or graphical representation of an algorithm.

 Flowchart plays an important role in the programming of a problem and helpful in understanding

the logic of program.

 Once the flow chart is drawn, it becomes easy to write program in any high level language.

 Flowcharts are classified into two categories:

1. Program Flowcharts

2. System Flowcharts

 Program flowcharts present a diagrammatic representation of a sequence of instructions

forsolving a program.

 System flowcharts indicate the flow of data throughout a data processing system, as well as

theflow into and out of the system. Such flowcharts are widely used by designers, to explain a data

processing system.

 Importance of Flowchart

1. Communication: Flowcharts are better way of communication of the logic of a program.

2. Effective Analysis: With the help of flowchart, problem can be analyzed in more effectiveway.

3. Proper documentation: Program flowcharts serve as a good program documentation, which

isneeded for various programs.

4. Efficient coding: The flowchart acts as guide or blueprint during the system analysis

andprogram development phase.

5. Proper Debugging: The flow chart helps in debugging process.

6. Efficient program maintenance: The maintenance of a program become easy with the help

offlowcharts.

 Symbols Used In Flowcharts

 Symbols Used In Flowcharts

SYMBOLS
PURPOSE

TERMINAL (START or STOP)

The beginning, end, or point of interruption in a program

INPUT OR OUTPUT

Input or Output data or information

PROCESSING

An instruction or group of instructions which changes the

program

PREPARATION[Looping]

An instruction or group of instructions which changes the

program

DECISION or BRANCHING

Represents a comparison, a question or a decision that

determinates alternative paths to be followed

PREDEFINED PROCESS

A group of operation not detailed in the particular set of

flowcharts

CONNECTOR

An entry form, or an exit to the another part of the

program flowchart

FLOW DIRECTION

The direction of processing or data flow.

Example: Design a flow chart and an algorithm to find the area of a square.

Step 1: START

Step 2: INPUT Side

Step 3: [Calculate Area]

 Area = Side * Side

Step 4: OUTPUT Area

Step 5: STOP

1. Write a program, design a flow chart and an algorithm to find the larger of two numbers.

Step 1: Start

Step 2: Input A and B

Step 3: If(A>B) then

Output A

Else

Output B

[End if]

Step 4: Stop

2. Write a program, design a flow chart and an algorithm to find given number is odd or even.

Step 1: Start

Step 2: Input Num

Step 3: If((Num%2)!=0) then

Output Odd

Else

Output Even

[End if]

Step 4: Stop

 Advantage of Flowcharts

1. Flowcharts provide an excellent means of communication, which is very easy to understand.

2. It has got a definite procedure, which shows all the major parts of a program, It is easy to

convert it into a program.

3. It is independent of programming language.

4. It is easy to debug as every step has got its own logical sequence.

 Disadvantages of Flowcharts

1. It is time-consuming and it requires the uses of a number of symbols which are to be

properly represented.

2. The represented of complex logic is difficult in a flowchart.

3. Alterations and modifications can be only made by redrawing the flowcharts.

 Pseudo code:

 This is an abstract representation of program in English statement.

 In pseudo code English words & phrases are used to represent operations.

 Advantages: Easy to read, understand & modify.

 Coding or Programming

 The process of writing program instructions for an analyzed problem in a programming

language.

 It is the process of translating the algorithm or flowchart into the syntax of given purpose

language.

 You must convert each step of the algorithm into one or more statements in a programming

language such as C, C++, and Java etc.

 Testing and Debugging

 Testing is the process of checking whether the program works according to the requirement

of the user.

 Debugging is the process of identifying and correcting or removing the Bugs (errors).

 There are four types of errors. They are

 Syntax errors

 Run-time errors

 Semantic errors

 Logic errors (bugs)

 Syntax Error

 Syntax is the set of rules which should followed while creating the statements of the program.

 The grammatical mistakes in the statements of the program are called syntax errors.

 Example:

void main()

{

int a, b;

cout<< „Enter the numbers” ;

cin>> a >> b;

cout<< a + b

}

 In the example program, the fourth statement produces an syntax error as the missing semicolon.

 Run-time Error

 During execution of the program, some errors may occur. Such errors are called run-time

errors.

 Example: Divide by zero.

 Semantic Error

 An error, which occurs due to improper use of statements in programming language.

 Consider an expression C = A + B, indicating the values of the variable A and B are added and

assigned to variable C.

 If we written A + B = C, through the values of A and B are added, it cannot be assigned to variable

C written to the right of = Sign.

 This is semantic error.

 Logical Error

 Logical errors occur when there are mistakes in the logic of the program.

 Unlike other errors logical errors are not displayed while compiling because the compiler does not

understand the logic of the program.

 Example: To find the area of the circle, the formula to be used is area = 3.14 * r * r. But if we

written area = 3.14 * 2 * r, then the required output is not obtained even though the program is

successfully executed.

 Documentation and Maintenance

 Documentation is a reference material which explains the use and maintenance of the

program application for which it has been written.

 There are two types of documentation.

o Internal Documentation

o External Documentation.

 Internal Documentation:

 This is also known as technical documentation.

 It is meant for the programmer who may update the program code at later stages.

 It is done by:

o Defining meaningful variable names.

o Including comments in program code.

o Presenting the program code clearly.

 External Documentation:

 The program or application is supported with additional textual information about the application.

 It is useful for the user, administrator or developer.

 Maintenance:

 Program maintenance means periodic review of the programs and modifications based on

user’s requirements.

 Maintenance is a continuous task

 Documentation plays an important role in program maintenance. It helps speedy and efficient

maintenance.

 Programming Constructs

 A programming constructs is a statement in a program.

 There are 3 basic programming constructs.

o Sequential Constructs

o Selection Constructs

o Iteration Constructs

 Sequential Constructs:

 The program statements are executed one after another, in a sequence.

 Sequential constructs are:

o Input Statement

o Assignment Statement

o Output Statement

 Input Statement

 This statement is used to input values into the variables from the input device.

 Example: INPUT A, B, C

 Assignment Statement

 This statement is used to store a value in a variable.

 In many languages „=‟ is used as the assignment operator.

 Example: A = 10;

B = 5;

C = A + B;

 Output Statement

 This statement is used to display the values of variables on the standard output device.

 Example: OUTPUT C;

 Selection construct

 It is also known as conditional construct.

 This structure helps the programmer to take appropriate decision.

 There are five kinds of selection constructs, viz.

o Simple – if

o if – else

o if – else – if

o Nested – if

o Multiple Selection

 Simple - if :

 This structure helps to decide the execution of a particular statement based on a condition.

 This statement is also called as one-way branch.

 The general form of simple – if statement is:

if (Test Condition) // This Condition is true

Statement 1;

Statement 2;

 Here, the test condition is tested which results in either a TRUE

or FALSE value. If the result of the test condition is TRUE then

the Statement 1 is executed. Otherwise, Statement 2 is

executed. Ex: if(amount > = 5000)

discount = amount * (10/100);

net-amount = amount – discount;

 if – else statement :

 This structure helps to decide whether a set of statements should be executed or another set of

statements should be executed.

 This statement is also called as two-way branch.

 The general form of if – else statement is:

if (Test Condition)

Statement 1;

else

Statement 2;

 Here, the test condition is tested. If the test-condition

is TRUE, statement-1 is executed. Otherwise

Statement 2 is executed.

Ex: if(amount > = 5000)

discount = amount * (10/100);

else

discount = amount * (5/100);

 if – else - if statement :

 This structure helps the programmer to decide the execution of a statement from multiple

statements based on a condition.

 There will be more than one condition to test.

 This statement is also called as multiple-way branch.

 The general form of if – else – if statement is:

if (Test Condition 1)

Statement 1;

else

if (Test Condition 2)

Statement 2;

else

………..

else

if(test Condition N)

Statement N;

else

Default Statement

 Here, Condition 1 is tested. If it is TRUE, Statement 1 is executed control transferred out of the

structure. Otherwise, Condition 2 is tested. If it is TRUE, Statement 2 is executed control is

transferred out of the structure and so on.

 If none of the condition is satisfied, a statement called default statement is executed.

 Example:

if(marks > = 85)
PRINT “Distinction”

else

if(marks > = 60)

PRINT “First Class”

else

if(marks > = 50)
PRINT “Second Class”

else

if(marks > = 35)
PRINT “Pass”

else

PRINT “Fail”

 Nested if statement :

 The statement within the if statement is another if statement is called Nested – if statement.

 The general form of Nested – if statement is:

if (Test Condition 1)

if (Test Condition 2)

Statement 1;

else

Statement 2;

else

if (Test Condition 3)

Statement 3;

else

Statement 4;

Ex: To find the greatest of three numbers a, b and c.

if (a>b)

if (a > c)

OUTPUT a

else

OUTPUT c

else

if (b > c)

OUTPUT b

else

OUTPUT c

 Multiple Selection constructs or Switch statement :

 If there are more than two alternatives to be selected, multiple selection construct is used.

 The general form of Switch statement is:

Switch (Expression)

{

Case Label-1: Statement 1;

 Break;

Case Label-2: Statement 1;

 Break;

 …………..

Case Label-N: Statement N;

 Break;

Default : Default- Statement;
}

 Ex: To find the name of the day given the day number

Switch (dayno)

{
Case 1: PRINT “Sunday”;

Break;

Case 2: PRINT “Monday”;

Break;

Case 3: PRINT “Tuesday”;

Break;
Case 4: PRINT “Wednesday”;

Break;
Case 5: PRINT “Thursday”;

Break;
Case 6: PRINT “Friday”;

Break;
Case 7: PRINT “Saturday”;

Break;
default: PRINT “Invalid Day Number”;

}

 Iterative Constructs or Looping

 The process of repeated execution of a sequence of statements until some condition is

satisfied is called as iteration or repetition or loop.

 Iterative statements are also called as repetitive statement or looping statements.

 There are two iterative constructs, viz.

o Conditional Looping

o Unconditional Looping

 Conditional Looping :

 This statement executes a group of instructions repeatedly until some logical condition is satisfied.

 The number of repetitions will not be known in advance.

 The two conditional looping constructs are:

o While

o do while

 Unconditional Looping :

 This statement executes a group of instructions is repeated for specified number of times.

 The unconditional looping constructs is for statement.

 While Constructs:

 This is a pre-tested loop structure.

 This structure checks the condition at the beginning of the structure.

 The set of statements are executed again and again until the condition is true.

 When the condition becomes false, control is transferred out of the structure.

 The general form of while structure is

While (Test Condition)

Statement 1

Statement 2

……..

Statement N

End of While

 Example:

i = 1;

While (i< = 5)

PRINT i;

i = i + 1;

end of while

Output: 1 2 3 4 5

 do while Constructs:

 This is a post-tested loop structure.

 This structure checks the condition at the end of the structure.

 The set of statements are executed again and again until the condition is true.

 When the condition becomes false, control is transferred out of the structure.

 The general form of while structure is

do

Statement 1

Statement 2

……..

Statement N

while (Test Condition)

End of While

 Example:

sum = l;

i = 1;

do

sum = sum + i;

i = i + 1;

while (i < = 100);

 for Constructs:

 This structure is the fixed execution structure.

 This structure is usually used when we know in advance exactly how many times asset of

statements is to be repeatedly executed again and again.

 This structure can be used as increment looping or decrement looping structure.

 The general form of for structure is as follows:

for (Expression 1; Expression 2; Expression 3)
{

Statement 1;

Statement 2;

Statement N;

}

Where, Expression 1 represents Initialization

Expression 2 represents Condition Expression

3 represents Increment/Decrement

 Example:

sum = 0;

for (i=1; i<=10; i++)

sum = sum + i;

 Characteristics of a good program:

 The best program to solve a given problem is one that requires less space in memory, takes less

execution time, easy to modify and portable.

 Modification: A good program is the one which allows any modifications easily

wheneverneeded.

 Portability: A good program is the one which can be run on different type of machine with

aminimum or no change.

 Approaches to problem solving:

1. Top-down design:

 Top-down design involves dividing a problem into sub-problems and further dividing the sub-

problems into smaller sub-problems until it leads to sub-problems that can be implemented as

program statements.

 Where A is the main problem and remaining are the sub-problems.

 The top-down approach is taken for program design; the programs can be developed easily,

quickly, committing a minimum of errors.

2. Stepwise refinement:

 The process of breaking down the problem at each stage to obtain a computer solution is

called stepwise refinement.

3. Bottom-up design:

 A design method, in which system details are developed first, followed by major process.

 This approach is the reverse of top-down design.

 The process starts with identification of set of modules which are either available or to be

constructed.

 An attempt is made to combine the lower level modules to form modules of high level.

 Examples include object oriented programming using C++.

4. Programming techniques:

i. Unstructured programming:

 During learning stage by writing small and simple programs

without planning leads to unstructured programming.

ii. Procedural programming :

 This method allows us to combine the returning

sequences of statements into one single place.

 A procedure call is used to invoke the procedure.

After the sequence is processed, flow of control

proceeds right after the position where the call was

made.

 Procedures (sub procedures) programs can now be written as more structured and error

free.

iii. Structured programming :

 Structured programmin g is method of programming by using the following type of code

structures to write program:

oSequence (input, output, assignment)

o Selection (if, if-else etc.)

oIteration (while, do-while,

for) o Subroutines (functions)

iv. Modular programming:

 The process of splittin g the lengthier and complex programs into number of smaller

units (modules) is called modularization and programming with such an approach is

called modular programming .

 This technique provides grouping of

procedures which are common f unctionality

into separate modules.

 Advantages of modular

programming: o Reusability

oDebugging is easie

r o Building library

o Portability

CHAPTER 5

PROBLEM SOLVING METHODOLOGY
Review questions

Short answer questions:

1. What are the steps involved in Problem solving?

 The steps involved in problem solving are

 Problem definition

 Problem analysis

 Design

 Testing and debugging

 Documentation.

2. What is structured programming?

 Structured programming is a method of programming by using the basic programming

constructs like sequence, select and iteration.

3. Explain the sequential construct.

Ans: The ability of executing the program statement one after another in

 Sequence is called sequential construct.

4. What are the tools used in the design of problems?

Ans: Algorithm and flowchart.

5. What is a flowchart?

Ans: A flowchart is a pictorial representation of solution to any problem.

6. What is algorithm?

Ans: An algorithm is a step by step procedure to solve a given problem.

7. Mention the rules for drawing a flowchart.

Ans:

 Understand the problem statement clearly before developing a flowchart.

 Study the outputs to be generated and required input to solve the problem.

 Design the process in such a way that it produces the desired result.

 Test the Preparation by giving test data.

 Verify the result for correctness. Make suitable changes, if any change is required and repeat the

process.

8. Give the advantage of flowchart.

 Ans: Communication: Flowcharts are better way of communicating the logic of a system to

all concerned or involved.

 Effective analysis: With the help of flowchart, problem can be analyzed in more effective

way therefore reducing cost and wastage of time.

 Proper documentation: Program flowcharts acts as a good program documentation, which

is needed for various purposes.

 Effective coding: The flowchart acts as a guide or blueprint during the system analysis and

program development phase.

 Proper debugging: The flowchart helps in debugging process.

 Efficient program maintenance: The maintenance of a program becomes easy with the help

of flowchart. It helps the program to put efforts more efficiently on a specific part.

 9. What is testing?

 Testing means running the program and executing instructions, checking logic by

entering sample data and check output.

10. Define debugging.(E.Q.33)

Ans: Debugging is the process of removing errors.

11. What is syntax error?

Ans: The grammatical mistakes in the statements of the program are called

syntax error.

12. What is run time error?

Ans: Errors detected during execution of the program is called run time error.

13. What is logical error?

Ans: If the correct translation of algorithm causes the program to produce

wrong results, the error is called logical error.

14. What is Top down analysis?

 Top down analysis involves dividing a problem into sub problems and further dividing

into smaller problems until it can be implemented independently.

15. What is Bottom up approach?

 It is the opposite of top down approach, where small sub problems are combined

together to form a single large solution.

16. Define step wise refinement.

 The process of breaking down the problem at each stage to obtain a computer solution

is called Stepwise refinement.

17. Define coding.

 Coding is the process of translating the algorithm or flowchart into the syntax of

programming language.

18. Give the advantages of structured programming?

 It helps in clear understanding of the problem and its solution

19. What is Multiple selection?

Ans: Execution of statements from multiple statements is called multiple

selection.

20. What are the types of iteration construct?

Ans: Conditional looping and unconditional looping.

21. What is unconditional looping?

Ans: This statement executes a group of instructions and is repeated for

specified number of items.

22. What are the types of selection construct?

Ans:

 Simple-if statement

 if-lese statement

 Nested-if statement

 if-else-if statement or else-if-ladder

 Switch statement

23. Explain single entry and single-exit concept structured programming.

Ans: single entry and single exit means the program follows a sequence construct in

executinga problem. The program starts at the entry point and exits at the end .

Long answer questions:

24. Explain the concept of structured programming.(S.Q.2)

Ans: Structured programming is a method of programming by using sequence of sequentially executed

statements, conditional execution of statement (i.e., if statement), looping or iteration (i.e., while, do-

while, for).

25. What are the advantages of structured programming?(S.Q.18)

Ans:

 Structurted programs are easy to write as the programming logic is well organized.

 Structured programs are easy to test and debug as at any instant we are looking at a smaller unit

or module.

 Structured programs are easy to maintain due to their start-to-finish book like readability.

 Structured programs can be functionally decomposed into logical working units.

26. Write the various symbols used in a flowchart.

 Names Symbols Meaning or when it is

used.

 Oval

Beginning or end (Start /

stop)

 Parallelogram

Input or output

 Rectangle Executable statements or

process or calculation or

assignment.

 Rhombus Decision making or

branching.

 Preparation Only for “for loop”

 Connector Connection

Arrows ↑ ← ↓ → Direction

Pre-defined process Sub program

27. Explain the various types of errors detected during testing?

Ans:

 Syntax error: The grammatical mistakes in the statements of the program are called syntax

errors.

 Run-time error: Errors that are detected during the execution of the program is called run-time

error.

 Logical error: If the correct translation of the algorithm causes the program to produce wrong

results, the errors are called as logical error.

28. What are the features of algorithm?

Ans: The features of algorithm are:

 Input: Algorithm must accept 1 or more data.

 Definite: Each step must be definite and each step must be clearly specified what should be

done.

 Effective: The steps written must provide a proper solution or effective solution.

 Terminate: After some number of operation the algorithm must come to an end.

 Output: The algorithm must produce 1 or more output or result.

29. Explain conditional looping.

Ans: This statement executes a group of instructions repeatedly until some

logical condition is satisfied. The number of repetitions will not be known

in advance is known as conditional looping.

Essay type questions:

30. What are the types of for loops?

Ans: Traditional for loop

 Iterator based for loop

 Vectorised for loop

 Compound for loop

31. Briefly explain the various stages of problem solving. (S.Q.1, 9, 17, E.Q.33, 34)

Ans:

o Analysis: Analysis involves identifying the following i.e., input, output, and any additional

requirements or constraints on the solution.

o Design: To represent the solution of the problem we use tools such as algorithm and flowcharts.

o Coding: Coding is the process of translating the algorithm or flowchart into the syntax of a

given programming language.

o Testing: Testing means running the program, executing all the instructions/ functions and

checking the logic by entering sample data to check the output.

o Maintenance: Program maintenance means periodic review of the programs and modifications

based on user‟s requirements.

32. Explain the problem definition phase.

Ans: In the problem definition, the problem is defined by solving the following questions

like what program does?, what are its tasks?, what kind of data is required ?, what will

be the output? how to interact with the user and the system. This stage focuses on

the root of the problem and try to understand the problem clearly.

33. Write a note on testing and debugging?

 Testing means running the program, executing all its instructions and checking the

logic by entering sample data and verify the output.

 Debugging is the process of finding and correcting program code mistakes that‟s

called errors.

 During this stage the program errors like syntax , run time and logic errors are found ,

which has to be removed and the program has to be run again , this process continues /

until the program has all the errors fixed and is ready with the output.

34. Briefly explain documentation and maintenance.

 Documentation is a reference material which explains the use and maintenance of the

program , it can be in the separate form of printed document or as a help file in the

program itself. There are two types of documentation:

a. Internal Documentation: this is known as technical documentation which is meant

for the programmer to update the code.

b. External Documentation: this is the additional information about the application

which is useful for the user.

Maintenance means periodic review of the programs and modification based on users

requirements. It is a continuous task , where documentation plays an important role by

helping in speedy and efficient maintencance.

35. Explain modular design.

Ans: The larger programs are divided into a number of smaller logical components, each

of which serves a specific task. The process of splitting the lengthier and complex

programs into no of smaller units called modules is called modularization. And

programming with such an approach is called modular programming.

36. Explain Divide and conquer method.

Ans: In divide and conquer approach, the problem in hand, is divided into smaller sub-problems

and then each problem is solved independently. When we keep on dividing the subproblems

into even smaller sub-problems, we may eventually reach a stage where no more division is

possible. Those "atomic" smallest possible sub-problem (fractions) are solved. The solution of

all sub-problems is finally merged in order to obtain the solution of an original problem.

Broadly, we can understand divide-and-conquer approach in a three-step process.

Divide/Break

This step involves breaking the problem into smaller sub-problems. Sub-problems should

represent a part of the original problem. This step generally takes a recursive approach to divide

the problem until no sub-problem is further divisible. At this stage, sub-problems become

atomic in nature but still represent some part of the actual problem.

Conquer/Solve

This step receives a lot of smaller sub-problems to be solved. Generally, at this level, the

problems are considered 'solved' on their own.

Merge/Combine

When the smaller sub-problems are solved, this stage recursively combines them until they

formulate a solution of the original problem. This algorithmic approach works recursively and

conquer& merge steps works so close that they appear as one.

38. Give syntax and flowchart of if-else and else-if construct with an example. (Q. 37)

Ans: if-else construct: It is also known as two-way branching. It is used when there are

alternative statements needed to be executed based on the condition.

Syntax:Flowchart:
if(test_condition) ↓

 {

 True statement; F T

 }

else

 {

 False statement;

 }

EXAMPLE:

To check whether a given year is a leap year or not

#include<iostream.h>

#include<iomannip.h>

#include<conio.h>

void main()

 {

int year;

clrscr();

cout<<”Enter the year:”;

cin>>year;

if(year%4==0 && year%100!=0 ││ year%400 ==0)

cout<<”It is a leap year”<<endl;

else

cout<<”It is not leap year”<<endl;

getch();

 }

else-if construct: It will verify the range of values and a choice is made between different

possible alternatives.

isTC

statement2 statement1

Next statement

Syntax:
if(test_condition1)

 {

 Statement 1;

 }

else if(test_condition2)

 {

 Statement 2;

 }

else if(test_condition3)

 {

 Statement 3;

 }

else

 {

default statement;

 }

Example:
#include<iostream.h>

 #include<iomanip.h>

 #include<conio.h>

void main()

 {

int units;

float amount;

clrscr();

cout<<”Enter the units consumed:”;

cin>>units;

if(units < 30)

amount = 3.50 * units;

else if(units >=30 && units <50)

amount = 4.25 * units;

else if(units >=50 && units <100)

amount = 5.25 * units;

else

amount = 5.85 * units;

cout<<”The repaid amount is”<<”=”<<amount<<endl;

getch();

 }

Flowchart:

T F

 T F

 T F

39. Explain while-do construct with an example.

Ans: While-do construct: It is also known as pre-tested loop. Condition is

checked before looping.

Syntax:while(test_condition) Flowchart:

 {

 statement1;

…………..; F

statement n;

 }

 T

TC1

 S1
TC2

TC3

default

 S2

 S3

 Next statement

isTC

statement

 Next statement

Example:
#include<iostream.h>

#include<iomanip.h>

#include<conio.h>

void main()

{

int time, year;

floatpriamt, netamt, rate, ci;

clrscr();

cout<<”Enter the priamt, time and rate”;

cin>>priamt>>time>>rate;

netamt = priamt;

year = 1;

while(year <= time)

netamt = netamt*(1+rate/100);

year++;

ci = netamt – priamt;

cout<<”Compound interst =”<<ci<<endl;

cout<<”Nett amount =”<<netamt<<endl;

getch();

 }

40. Explain do-while construct with an example.

Ans: While-do construct: It is also known as pre-tested loop. Condition is

checked before looping.

Syntax: do Flowchart:

 {

 statement1;

 …………..;

statement n;

 } while(test_condition);

Example:
#include<iostream.h>

 #include<iomanip.h>

 #include<conio.h>

void main()

 {

intn,temp, sum, rem;

statement

1;

………..;

statement

n;

is TC

Next statement

clrscr();

cout<<”Enter a number:”;

cin>>n;

temp = n;

sum = 0;

do

 {

rem = n%10;

sum = sum + rem*rem*rem;

 n =n/10;

 } while(n!=0)

if(sum==temp)

cout<<”It is an Armstrong number”<<endl;

else

cout<<”It is not an Armstrong number”<<endl;

getch();

 }
